Hyperbolic geometry and moduli of real cubic surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complex Hyperbolic Structure for Moduli of Cubic Surfaces

We show that the moduli space M of marked cubic surfaces is biholomorphic to (B −H)/Γ0 where B is complex hyperbolic four-space, where Γ0 is a specific group generated by complex reflections, and where H is the union of reflection hyperplanes for Γ0. Thus M has a complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique co...

متن کامل

Algebraic surfaces and hyperbolic geometry

Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi-Yau varieties and many rationally connected varieties, the Kawamata-Morrison cone conjecture predicts the st...

متن کامل

Explicit Real Cubic Surfaces

The topological classification of smooth real cubic surfaces is recalled and compared to the classification in terms of the number of real lines and of real tritangent planes, as obtained by L. Schläfli in 1858. Using this, explicit examples of surfaces of every possible type are given.

متن کامل

Moduli spaces of surfaces and real structures

We give infinite series of groups Γ and of compact complex surfaces of general type S with fundamental group Γ such that 1) any surface S′ with the same Euler number as S, and fundamental group Γ, is diffeomorphic to S 2) the moduli space of S consists of exactly two connected components, exchanged by complex conjugation. Whence, i) on the one hand we give simple counter-examples to the DEF = D...

متن کامل

Moduli spaces of hyperbolic surfaces and their Weil–Petersson volumes

Moduli spaces of hyperbolic surfaces may be endowed with a symplectic structure via the Weil–Petersson form. Mirzakhani proved that Weil–Petersson volumes exhibit polynomial behaviour and that their coefficients store intersection numbers on moduli spaces of curves. In this survey article, we discuss these results as well as some consequences and applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales scientifiques de l'École normale supérieure

سال: 2010

ISSN: 0012-9593,1873-2151

DOI: 10.24033/asens.2116